E1a gene expression blocks the ERK1/2 signaling pathway by promoting nuclear localization and MKP up-regulation: implication in v-H-Ras-induced senescence.

نویسندگان

  • Juan L Callejas-Valera
  • Juan Guinea-Viniegra
  • Carmen Ramírez-Castillejo
  • Juan A Recio
  • Eva Galan-Moya
  • Natalia Martinez
  • Jose M Rojas
  • Santiago Ramón y Cajal
  • Ricardo Sánchez-Prieto
چکیده

In response to oncogenic signals, cells have developed safe mechanisms to avoid transformation through activation of a senescence program. Upon v-H-Ras overexpression, normal cells undergo senescence through several cellular processes, including activation of the ERK1/2 pathway. Interestingly, the E1a gene from adenovirus 5 has been shown to rescue cells from senescence by a yet unknown mechanism. We investigated whether E1a was able to interfere with the ERK1/2 signaling pathway to rescue cells from v-H-Ras-mediated senescence. Our results show that, E1a overexpression blocks v-H-Ras-mediated ERK1/2 activation by two different and concomitant mechanisms. E1a through its ability to interfere with PKB/Akt activation induces the down-regulation of the PEA15 protein, an ERK1/2 nuclear export factor, leading to nuclear accumulation of ERK1/2. In addition to this, we show that E1a increases the expression of the inducible ERK1/2 nuclear phosphatases (MAPK phosphatases) MKP1/DUSP1 and DUSP5, which leads to ERK1/2 dephosphorylation. We confirmed our observations in the human normal diploid fibroblasts IMR90, in which we could also show that an E1a mutant, unable to bind retinoblastoma protein (pRb), cannot rescue cells from v-H-Ras-induced senescence. In conclusion, E1a is able to rescue from Ras-induced senescence by affecting ERK1/2 localization and phosphorylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PML is induced by oncogenic ras and promotes premature senescence.

Oncogenic ras provokes a senescent-like arrest in human diploid fibroblasts involving the Rb and p53 tumor suppressor pathways. To further characterize this response, we compared gene expression patterns between ras-arrested and quiescent IMR90 fibroblasts. One of the genes up-regulated during ras-induced arrest was promyelocytic leukemia (PML) protein, a potential tumor suppressor that encodes...

متن کامل

Constitutively active Ras negatively regulates Erk MAP kinase through induction of MAP kinase phosphatase 3 (MKP3) in NIH3T3 cells

The Ras/Raf/MEK/Erk signaling pathway is important for regulation of cell growth, proliferation, differentiation, survival, and apoptosis in response to a variety of extracellular stimuli. Lack of Erk MAPK activation is observed in several cancer cells despite active activation of Ras. However, little is known about the modulation of Erk1/2 activity by active Ras. Here, we show that overexpress...

متن کامل

MKP-1-induced dephosphorylation of extracellular signal-regulated kinase is essential for triggering nitric oxide-induced apoptosis in human breast cancer cell lines: implications in breast cancer.

Apoptosis is regulated by a series of biochemical events that commits a cell to death. We are interested in understanding and have been investigating the mechanisms by which nitric oxide (NO) induces apoptosis in human breast cancer cell lines. In this study, we investigated the possible interplay of extracellular signal-regulated kinase (ERK) and Akt pathways in NO-induced apoptosis. MKP-1 tra...

متن کامل

Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation.

Constitutive activation of growth factor signaling pathways paradoxically triggers a cell cycle arrest known as cellular senescence. In primary cells expressing oncogenic ras, this mechanism effectively prevents cell transformation. Surprisingly, attenuation of ERK/MAP kinase signaling by genetic inactivation of Erk2, RNAi-mediated knockdown of ERK1 or ERK2, or MEK inhibitors prevented the acti...

متن کامل

Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras.

Histone deacetylase 4 (HDAC4) is a member of a family of enzymes that catalyze the removal of acetyl groups from core histones, resulting in a compact chromatin structure that is generally associated with repressed gene transcription. Protein phosphorylation has been implicated in the regulation of the corepressor activity of the deacetylase. Here we report that serine/threonine kinases are fou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 19  شماره 

صفحات  -

تاریخ انتشار 2008